skip to main content


Search for: All records

Creators/Authors contains: "Bumpers, Phillip M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Leaf breakdown is an important process in forested headwater streams. A common method used to quantify the role of macroinvertebrate and microbial communities in leaf litter breakdown involves using paired mesh bags that either allow or exclude macroinvertebrate access to leaves. We examined common assumptions of the paired litterbag method to test (1) whether mesh size alters microbial respiration and (2) whether the effects of abrasive flows (e.g., from water and sediment) differ between coarse‐ and fine‐mesh litterbags. We measured rates of microbial respiration on Acer rubrum and Rhododendron maximum leaves incubated in coarse‐ and fine‐mesh litterbags. We also measured rates of abrasion using aerated concrete blocks in pairs of coarse‐ and fine‐mesh bags in ten streams across a gradient of discharge. We found that rates of microbial respiration on Acer rubrum leaves conditioned in fine‐mesh bags were 65% greater than the rates of respiration in paired coarse‐mesh bags, but respiration rates on Rhododendron maximum were similar in coarse‐ and fine‐mesh bags. Abrasion was, on average, 56% greater in coarse‐mesh than paired fine‐mesh bags, and these effects were greater in streams with higher discharge. These results suggest that more caution is required when attributing the difference in leaf breakdown between coarse‐ and fine‐mesh bags to macroinvertebrates. Because the effect of mesh size on microbial respiration of Acer leaves and abrasion are opposite in direction, the effect that dominates and creates bias likely depends on both environmental context and experimental design. 
    more » « less
  2. Abstract

    Streams store nutrients in standing stocks of organic matter (OM) and associated biologically sequestered elements. Unlike standing stocks of autotrophs, detritus is depleted by nutrient enrichment, potentially reducing areal storage of detritus‐associated nutrients. To test effects of nutrient‐loading on storage of nitrogen (N) and phosphorus (P) by autotrophic and detrital‐pool compartments, we quantified the effects of 2 yr of continuous experimental N and P additions on fine benthic organic matter (FBOM), leaves, wood, and biofilms in five forest streams. Our design tested the relative strength of N vs. P on OM nutrient content, areal OM storage, and areal nutrient storage in OM types. Enrichment increased nutrient content of all OM types; %P increased more than %N in leaves, wood, and biofilms, but not FBOM. Biofilm %P and %N increased more than in all detrital types. Areal FBOM and leaf storage declined with nutrient enrichment. Biofilm standing stocks were generally higher with enrichment but were not related to the streamwater N and P gradients. Despite increased OM nutrient content, total areal nutrient storage in leaves and wood decreased due to reduced OM storage. Although annual nutrient storage was stabilized by FBOM, seasonal variation in nutrient storage increased with enrichment. Leaf‐associated nutrient storage was reduced in most seasons, whereas FBOM and biofilm nutrient storage increased in winter and spring, respectively, relative to pretreatment. Overall, the combined responses of all OM types to enrichment resulted in reduced storage and altered seasonal availability of carbon and nutrients, which has implications for consumers and downstream processes.

     
    more » « less
  3. null (Ed.)
  4. Abstract

    We used a recently published, open‐access data set of U.S. streamwater nitrogen (N) and phosphorus (P) concentrations to test whether watershed land use differentially influences N and P concentrations, including the relative availability of dissolved and particulate nutrient fractions. We tested the hypothesis that N and P concentrations and molar ratios in streams and rivers of the United States reflect differing nutrient inputs from three dominant land‐use types (agricultural, urban and forested). We also tested for differences between dissolved inorganic nutrients and suspended particulate nutrient fractions to infer sources and potential processing mechanisms across spatial and temporal scales. Observed total N and P concentrations often exceeded reported thresholds for structural changes to benthic algae (58, 57% of reported values, respectively), macroinvertebrates (39% for TN and TP), and fish (41, 37%, respectively). The majority of dissolved N and P concentrations exceeded threshold concentrations known to stimulate benthic algal growth (85, 87%, respectively), and organic matter breakdown rates (94, 58%, respectively). Concentrations of both N and P, and total and dissolved N:P ratios, were higher in streams and rivers with more agricultural and urban than forested land cover. The pattern of elevated nutrient concentrations with agricultural and urban land use was weaker for particulate fractions. The % N contained in particles decreased slightly with higher agriculture and urbanization, whereas % P in particles was unrelated to land use. Particulate N:P was relatively constant (interquartile range = 2–7) and independent of variation in DIN:DIP (interquartile range = 22–152). Dissolved, but not particulate, N:P ratios were temporally variable. Constant particulate N:P across steep DIN:DIP gradients in both space and time suggests that the stoichiometry of particulates across U.S. watersheds is most likely controlled either by external or by physicochemical instream factors, rather than by biological processing within streams. Our findings suggest that most U.S. streams and rivers have concentrations of N and P exceeding those considered protective of ecological integrity, retain dissolved N less efficiently than P, which is retained proportionally more in particles, and thus transport and export high N:P streamwater to downstream ecosystems on a continental scale.

     
    more » « less